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SUMMARY 
In the present paper, preconditioning of iterative equation solvers for the Navier-Stokes equations is 
investigated. The Navier-Stokes equations are solved for the mixed finite element formulation. The linear 
equation solvers used are the orthomin and the Bi-CGSTAB algorithms. The storage structure of the 
equation matrix is given special attention in order to avoid swapping and thereby increase the speed of the 
preconditioner. The preconditioners considered are Jacobian, SSOR and incomplete LU preconditioning of 
the matrix associated with the velocities. A new incomplete LU preconditioning with fill-in for the pressure 
matrix at locations in the matrix where the corner nodes are coupled is designed. For all preconditioners, 
inner iterations are investigated for possible improvement of the preconditioning. Numerical experiments 
are executed both in two and three dimensions. 
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INTRODUCTION 

Over the last few years, a great effort have been made to solve large systems of time dependent 
Navier-Stokes equations in three dimensions. Such efforts have been made in oceanography,'. 
 aerodynamic^,^-' haemodynamics6-' as well as in general fluid dynamics. As progress has been 
made in designing efficient algorithms3s9 for generating meshes round arbitrary bodies, attention 
has been focused on designing large-scale algorithms for solving the Navier-Stokes equations. 

For large problems, the use of direct equation solvers is prohibitive due to both the large 
storage needed and the computational time necessary for solving the problem.' ' Iterative 
methods have advantages' '-' compared to direct solvers. However, the success of most iterative 
equation solvers seems to depend on using a good preconditioner.' ' 9 ' '  

Several iterative equation solvers for non-symmetric equation systems are available. In this 
work two equation solvers which have also been used by others"? "9 l9 the truncated orthomin 
method and the Bi-CGSTAB method of Van der Horst,Zo-22 have been selected. Different 
preconditioning methods of iterative equation solvers for flow problems have been subject to 
extensive studies. "9 14* ' '* ' ' C arey et a1." preconditioned iterative solvers for both penalty and 
mixed formulation of the Navier-Stokes equations. However, with the mixed formulation they 
only investigated diagonal preconditioning, and with the penalty formulation they used full 
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factorization of the corresponding Stokes equations as preconditioner. The full factorization was 
necessary to obtain convergence of the iterative equation solver. The disadvantage with full 
factorization preconditioning of the Stokes equations is that it requires almost the same memory 
space as full factorization of the Navier-Stokes equations. Much of the advantage of a reduction 
in storage requirement and computational work by using an iterative equation solver is thereby 
lost. Howard et dz3 incorporated ‘stabilization’ matrices in the equations and investigated 
incomplete LU factorization. In the present study several preconditioners for the mixed formula- 
tion are investigated. The linear equation solvers with different preconditioners have been tested 
for both the Stokes and the Navier-Stokes equations in two and three dimensions. The numerical 
experiments have been performed for different Reynolds numbers and different grid resolution. 
The mixed finite element formulation, first described by Taylor and Hoodz4, has been chosen. 
This mixed element method has certain advantages compared to the penalty method, as it does 
not introduce ‘checkerboard’ pressure variations which could well occur with the penalty method. 

In the present work, a new incomplete LU preconditioner with slight fill-in is designed specially 
for preconditioning the Navier-Stokes equations. This preconditioner permits fill-in at certain 
predefined locations in the pressure coefficient matrix, rather than allowing fill-in when the size of 
the fill-in coefficient exceeds a certain limit. As the locations of the fill-in are predefined, the 
housekeeping during the factorization process is considerably reduced. These predefined loca- 
tions are at the locations in the pressure matrix where the corner nodes are coupled. The corner 
nodes are coupled if they belong to the same finite element. 

THE TEST PROBLEMS 

The first test problem concerns the linear Stokes equations. The Stokes equations are given by 

-pV2v+Vp=0 in R (1) 

- V * v = O  i n R  (2) 
where v is the velocity vector, p is the pressure and p is viscosity coefficient. In this problem the 
boundary conditions corresponding to channel flow, Figure 3, are used. The second test problem 
concerns the Navier-Stokes equations, which are obtained by adding the convective term pv - Vv 
where p is the density, to the Stokes equations, 

-pVzv+pv*Vv+Vp=O in R, (3) 

- V . v = O  i n n .  (4) 
The boundary conditions for the Navier-Stokes equations correspond to the driven cavity flow 

given in Figure 3. 
In the present mixed finite element formulation, the velocities are approximated by quadratic 

polynomials and the pressure with linear polynomials. The eIements which are used consist of 
triangles in two dimensions and tetrahedra in three dimensions. For triangles and tetrahedra, the 
quadratic and linear polynomials are complete. Let the quadratic polynomials be Ni and the 
linear polynomial Li. Then by the Galerkin residual method and integration by parts, the finite 
element formulation of the Stokes equations becomes 

pVNi * VV dR + NiVp dR = 0, (5 )  
Jn -I* Liv.vdf2=0. (6) 
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The minus sign in the continuity equation is important to achieve symmetry of the matrix in 
the interior of the domain R. However, on external boundaries the symmetry is dependent on the 
boundary conditions. The symmetry is broken if not all velocities are specified at the external 
boundaries. In many fluid dynamic problems this will be the case as some boundaries have to be 
open. 

In a similar way, the finite element formulation of the Navier-Stokes equations becomes 

pNiv * VvdQ+ NiVpdR= 0, (7) il, 
-jnLiV*vdR=O. (8) 

Let 

..=In pVNi0VvdR+ (9) 

P 

By applying Newton's method for solving this non-linear equation system, the set of equations 
may be written 

and 

v"' = V" + Av", 

p"' = p" + Ap". 

Here an initial approximation (vo,po) must be chosen, and the matrix and right-hand side of 
equation (11) should be evaluated at the point (v", p"), i s  order to get the Newton corrections 
(Av", Ap"). The iteration process is continued until the solution is considered satisfactory. The 
stopping criterion which has been used is 

( (I Av" II + I( Ap" II 2)1'z < E (  II v"+ 1 ) '  + I1 p"+ II 2)1/2 

with E =  where 11 - 11 is the Euclidean norm. 

STRUCTURE OF THE EQUATION MATRIX 

The finite element formulations ( 5 )  and (6) of the Stokes problem and the system of equations (1 1) 
that must be solved in the Newton process may be written in the form 

Qx = b, (14) 
where 

a = [ ,  A B  O]. x=[:i], b=[El]. 
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For the Stokes problem, x, and xp contain the node values of the velocity components and 
pressure, respectively. For the Navier-Stokes problem they contain the Newton corrections of the 
same quantities. The storage of the matrix Q is important when an iterative equation solver is 
used. For large problems only non-zero coefficients should be stored. Several storage schemes 
exist for storing sparse matrices. If the grid is regular, the different diagonals can be stored as 
one-dimensional vectors.I6 For irregular grids, a more complex pointing structure is used to 
identify the rows and coefficients in the matrix used.*' When solving Navier-Stokes problems for 
irregular grids, a special storing scheme believed to have several advantages has been developed 
(Figures 1 and 2). Figure 1 shows the structure of the matrix Q for a simple two-dimensional grid 
consisting of two triangular elements. The upper part of the figure shows the grid and numeration 
of nodes. The corner nodes are numbered first. This way of numbering is obtained by the 
unstructured grid generation algorithm given by Wille' and is advantageous both in storing the 
matrix and during incomplete LU preconditioning. The indicies above and to the left of the 
matrix shown in the lower part of Figure 1 refer to the node numbers. The equation matrix has 
non-zero coefficients at locations where two nodes are coupled in the grid. Two nodes are said to 
be coupled if they belong to the same finite element. For example, in the grid in Figure 1, nodes 
1 and 5 are coupled while nodes 2 and 9 are not. The equation system is symmetric in shape. The 
matrix A contains the coefficients associated with the velocity degrees of freedom. The upper and 
lower parts of the submatrices of A are stored in separate one dimensional vectors U and L as 
shown in Figure 2. This splitting is advantageous during the preconditioning, as the lower 
triangular part is accessed by columns and the upper triangular part is accessed by rows during 
factorization. The pointing structure has two pointing vectors, the first, PAC points to where the 
node numbers for corresponding rows are stored in the other pointing vector, PAR. Let dim be 
the spatial dimension for the set of differential equations, then the dimension of each of the 
submatrices A,, is [dim x dim]. The position for each of these submatrices in both U and L is then 
easily calculated from the corresponding index in the vector PAR. Corresponding pointing 
structures are established for the matrices B, C and P. The matrix P is initially zero, but fill-in will 
occur during the ILU preconditioning. The dimension of Bij is [dim x 1) and C, is [l x dim]. The 
locations of the submatrices Bij and Cij are also easily calculated from the index in the pointing 
vector PBCR. The fill-in in the submatrices for the pressure Pi, consists of simple scalars. The 
pointing structure for the P matrix is equal to the first elements, which correspond to the pointing 
structure for the corner nodes, of the B and C matrices. The pointing structure for the B and 
C matrices can then also be used for addressing the P matrix. The right-hand side and the 
solution vector, b, and xv, can also be considered to consist of subvectors bVi and bxi with 
dimension [dim x 13. These subvectors will represent the right-hand side and solution for node i. 
The vectors b, and xp consist of scalars, bpi and bpi, which are the right-hand side of the continuity 
equation and the pressure in node i. All the submatrices A,, Bij and Cij are stored row by row. 

An important point to notice is that for the Navier-Stokes equations all the coefficients in the 
submatrices A,, are non-zero. However, for the Stokes problem there are only non-zero coeffic- 
ients on the diagonal of Aij. This implies that only the diagonals of A, need to be stored for the 
Stokes equations. 

PRECONDITIONING 

Let M be a non-singular matrix. The original equation system Qx=b can be replaced with 
M-'Qx = M-'b. The quality of the preconditioner depends very much on the choice of M. The 
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Figure 1. The upper part of the figure shows a simple two-dimensional grid consisting of two elements. In this grid, the 
corner nodes are numbered first, then the midedge nodes. The structure of the corresponding equation matrix is shown 
below. The numbers at the top and to the left of the matrix are nodes numbers. The matrix P is initially zero and is used in 

the ILU preconditioning with fill-in 

preconditioning matrix M should have the following properties: 

(1) M is a good approximation to Q. 
(2) M is easily computed. 
(3) M is reasonably sparse. 
(4) Equations of the form Mx = c are easily solved. 
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Figure 2. The equation matrix is stored as five one-dimensional vectors. The zero submatrices shown in Figure 1 are not 
stored. The storage structure requires two pointing vectors, one pointing to where each row begins in the vector which 
contains the nodes included in that row. The upper part U and the lower part L of A are stored in separate vectors. The 
same pointing structure can then be used for both U and L. Similarly, the same pointing structure is used for B and C. 

Note that the first of the pointing structure for B and C can also be used for P 
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There are several ways of selecting M. Let L,, D, and U, be the lower part, the diagonal and the 
upper part of A. The following preconditioning methods have been considered. 

Diagonal preconditioning 

M=[: ;] 
This corresponds to Jacobian or diagonal preconditioning of A, and is referred to as diagonal 
(preconditioning) in the tables. 

SSOR preconditioning 

(17) 
1 0 11 ' 

where the parameter o is between 1.0 and 2.0. When A is symmetric this corresponds to the 
symmetric successive over-relaxation, SSOR, preconditioning of A. The preconditioning is 
performed by solving a lower and an upper triangular equation system. The pointing structure, 
which permits the addressing of U, by row and L, by column, simplifies the solution procedure of 
the lower and upper triangular equation systems. Let Mv = u, then 

Solve (D + oL)y = u, z = Dy, Solve (D + wU)w = z. 

The SSOR preconditioning requires no extra storage as no coefficients are changed during the 
preconditioning. The efficiency of the SSOR preconditioning depends on the choice of o. It has 
not been tried to find an optimal choice of o. o= 1.2 have been used to produce the results of 
Table 11. 

Incomplete factorization of A 

matrix M for this preconditioner, ILU,, is 
A can be split as 2,6,, where z,o, is an approximate LU factorization of A. The precondition 

Incomplete factorization of the symmetric part of A 

preconditioner is then 
For symmetric preconditioning, obviously L: = US,. The symmetric version ILUS, of this 

2;Q 0 
M=[ 0 I]' (19) 

where G6., is the incomplete factorization of the symmetric part of A. 

Incomplete factorization of Q 

Incomplete LU factorization on the complete matrix Q (see Figure 1) can be performed if 
certain fills are accepted. in the present work these fill-ins are associated with the pressure and 
correspond to the matrix P given in Figure 1. Using the previous definition of coupled nodes, the 
submatrices A, are updated during the forward elimination of the matrix A, if the two nodes i, j 
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are coupled in the element graph. The same philosophy is applied to the fill-ins in the pressure 
matrix P. Let nodes i and J be corner nodes, then the fill-in Pi, are accepted if the nodes i, j are 
coupled. The general algorithm for forward eliminations and backward substitution is found in 
the appendix. In this algorithm an inversion of the submatrices Ark on the diagonal is included. As 
mentioned earlier, when the Stokes equations are considered, only the diagonal of these sub- 
matrices need to be stored. When using the Stokes equations as preconditioner, fill-in will never 
occur outside this diagonal. The inversion of the diagonal submatrices for the Stokes precondi- 
tioner will therefore only consist of inverting the diagonal in these submatrices. The precondition- 
ing matrix of this preconditioner, ILU, then becomes 

M = LO. (20) 

Incomplete factorization of the symmetric part of Q 

preconditioner is 
A symmetric version, ILU', based on the symmetric part (Q+QT)/2 of Q of the above 

M=Z"@. (21) 
In this work, the matrix Q corresponding to the Stokes problem has been used when 

computing the preconditioning matrix M. Hence, it has not been necessary to compute a new 
preconditioning matrix for each Newton step. However, it is surprising that although the matrix 
Q is singular, no such singularity was observed in M = L6. Here, the lower part of Q, e, has unit 
diagonal, and it was observed that the diagonal elements of 6, corresponding to the zero block 
matrix in the lower right corner of Q were all negative, and of the same order of magnitude. The 
same observations were made for the symmetric factorization M = fi@. 

INNER ITERATIONS AND EQUATION SOLVERS 

The preconditioning can be improved by inner iterations. When the equations are preconditioned 
by M - I ,  the equation system to be solved is M-'Qx = M  -'b. During each iteration, the equation 
Qx = c  is solved approximately, while Mz = c  is solved exactly. A better approximation to the 
solution of Qz=c can be obtained by iterations on the residual of r=c-Qz. Let the correction to 
z',, at each iteration be si. Then zi = zi- + s'. The new residual vector has the form ri = ri-  - Qs'. 
The correction to the residual vector is the solution of Msi=ri-l. The inner iteration algorithm is 
given by 

zO=M-'c 
for i=l to n do 

,.i- 1 - - c - Qz'- 
si = M - l r i  - 1, 

zi=zi-l+si. (22) 
The algorithm above can be used for improving the convergence rate of all the preconditioning 
methods described above." 

Two linear equation solvers have been tested 

(1) The truncated Orthomin method, with 10 search direction vectors. In this paper, this 
method is referred to as Orthomin (10).15*19 

(2) The Bi-CGSTAB method of Van der Vorst.Zo-22 This method is a new variant of Bi- 
Conjugate Gradients and has, to some extent, less irregular convergence behaviour than the 
Conjugate Gradients-Squared (CG-S) method. This method is referred to as CGSTAB in 
this paper. 
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Figure 3. The upper part of the figure shows the boundary conditions for the two-dimensional and the lower part shows 
the boundary conditions for the three-dimensional test problems. (a) boundary conditions for channel flow for the Stokes 
equations, (b) the boundary conditions for the non-linear cavity flow problem described by the Navier-Stokes equations 
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Although the matrix M-'Q is singular, the pressure has not been specified at one node, or 
normalized in any other way, in order to get a unique solution. Iterative solvers do not need such 
a specification, as this is provided by the initial start vector. In all cases the start vector was the 
zero vector. 

The two linear equation solvers have been tested for several preconditioners and with different 
grid resolutions for the Stokes equation in two and three dimensions. The following convergence 
criterion for the linear equation solvers has been used. 

where r = b - A l  is the residual of the computed approximate solution 2, of the system Ax = b. 
The value of E was specified to be E =  low4. 

For the Navier-Stokes equations, only the CGSTAB solver was used. However, since the linear 
equation solvers sometimes may show a stagnant behaviour, instead of restarting the linear 
equation solver in the case of the Newton method, the solution (v", p") has been updated with 
corrections (x?+ l ) ,  x$+ I ) )  when 

( 1 )  6x"' 112 + 1) 6xb" (12)"2 < &2( 1) v" 112 + I( p" 112)1/2. (24) 
Here xfi) is the ith approximation to the solution of the linear equations, and x(~+ ' )=  x(')+~x('). 

This actually happens only in a few cases of the last Newton step, when the ILUs preconditioning 

Table I. The upper table shows initial work in number of multiplications x lo3, which is the forward 
elimination of the equation matrix. The lower table shows the work executed in each iteration with 
Orthornin( 10) and CGSTAB for the different preconditioners. The last column shows the amount of 

iterative work x lo3 for each inner iteration 

Initial work 

Grid ILU" ILU 

5 x 5  
7 x 7  

lox 10 
15 x 15 
20 x 20 
50 x 50 

40 89 
78 173 

158 351 
355 786 
630 1394 

3920 8669 

Iterative work 

Orthornin( 10) CGSTAB 

Grid Diagonal ILU, ILU Diagonal ILU" ILU Inner 
SSOR SSOR iterations 

5 x 5  17 22 24 18 28 33 15 
7 x 7  32 42 47 34 55 63 29 

1Dx 10 63 83 92 69 109 126 58 
15 x 15 139 184 203 153 242 280 129 
20 x 20 245 323 357 270 427 495 228 
50 x 50 1498 1982 2192 1663 2630 3050 1409 
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was used. When the non-symmetric ILU preconditioning was used, it happens a few times that, 
neither one of the stopping criteria was fulfilled, and the iteration was stopped when the number 
of iterations was larger than 1OOO. 

NUMERICAL RESULTS 

The domains with boundary conditions in both the 2D and 3D, for which the algorithms are 
tested are shown in Figure 3. The domains are divided into triangular or tetrahedral finite 
elements. The number of elements, nodes and unknowns are given below. Let the division of the 
regular domain in each direction be n, then 

Grid size Elements Nodes Unknowns 

2D n x n  2nZ (2n + 1)' 2(2n + 1)' +(n + 
3D n x n x n  6n3 (2n+ 1)' 3(2n+ l)'+(n+ 1)' 

Stokes equations 

The viscosity coefficient used in the present experiments was p =  0.001. 
The work executed at each iteration for the different preconditioners with Orthornin( 10) and 

CGSTAB are given in Table I. The diagonal and SSOR preconditioners need no initial com- 
putations. The ILU type preconditioners need a factorization of the preconditioning matrix 

Table 11. The number of iterations to achieve convergence with CGSTAB and Orthomin(10) for the 
Stokes equations. The different preconditioners are diagonal, SSOR, ILU, on the velocity matrix, ILU 
with fill-in on the entire matrix and ILUs on the symmetric part of the entire matrix. The viscosity p is 

The first number in each column is the number of linear iterations without inner iterations and 
the second is the number of iterations with one inner iteration 

CGSTAB 

Grid Diagonal SSOR ILU, ILU ILU8 

5 x 5  85, 112 78, 73 89,80 11, l l  10, 13 
7 x 7  152, 185 120, 112 115,82 17, 14 16,18 

10 x 10 206,210 138, 121 128,109 27, 19 23, 21 
15x 15 369,227 209, 189 203, 141 65,31 37, 25 
20 x 20 619, 307 269, 227 268,242 135, 57 60, 37 

Orthomin(10) 

Grid Diagonal SSOR ILU" ILU ILU8 

5 x 5  495, - 381, 334 338,259 22,lO 16, 12 
7 x 7  538, - 683, - -, 299 37,36 29, 30 

l o x  10 774, 703 _ _  - _  56,46 4 5 , a  
, , 98, 55 84, 52 15 x 15 -, 782 
, , 159.86 133,68 20 x 20 -, 973 

_ _  - -  
--  -- 



536 0. DAHL AND S. 0. WILLE 

before the iterative process is started. However, this factorization is considered as an initialization 
and this work is not considered as iterative work in solving the linear equations. 

In Table I1 the number of iterations necessary to achieve convergence with Orthomin(10) and 
CGSTAB for the different preconditioners are listed. In each column, the first number is without 
inner iterations and the second one is with one inner iteration. Table I1 shows that the CGSTAB 
equation solver is far more efficient than Orthomin(10) for all preconditioners. ILU and ILUs are 
the best preconditioners in terms of the number of iterations, and also obviously in terms of 
computational work. Hence, only these were used in the rest of the experiments. One inner 
iteration also improves the convergence rate. The columns marked with - indicate that the 
solution is not convergent or the iteration process is stagnant. 

In Table 111, the Stokes equations are solved with CGSTAB with zero, one, two and three innei 
iterations. In these experiments only the CGSTAB equation solver and the ILUs preconditioner 
were used. The amount of work in each inner iteration is mainly the matrix-vector product 
v =M-'Qu. In each CGSTAB iteration this same product is computed twice. The first number in 
each column shows the number of iterations and the last number in each column indicates the 
number of times the above matrix vector product is computed. The results in this table show that 
one inner iteration is the most efficient. 

The results in Table IV show the number of iterations for different three dimensional grids for 
the Stokes equations. No continuation method was used. The results show that CGSTAB is more 
efficient than Orthomin (10). They also show that the ILUs preconditioner is better than the ILU 
preconditioner. 

Table 111. The number of CGSTAB iterations with the ILUB preconditioner for the Stokes 
equations with zero, one, two and three inner iterations. The first number in each column 
indicates the number of iterations. The second number indicate total number of matrix vector 

multiplications M- 'Ax in CGSTAB, including inner iterations 

Inner iterations 

Grid Zero One Two Three 

l o x  10 22, 44 10, 40 7,42 6,48 
20 x 20 75, 150 34, 136 25, 150 20,160 
40x40 270, 540 106,424 75,450 59,472 
80 x 80 699, 1398 304, 1216 207, 1242 169, 1352 

Table IV. The number of iterations for Orthomin(10) and CGSTAB with ILU 
and ILU' preconditioners for the Stokes equations with different resolutions of the 

three-dimensional grid. No inner iterations are used 

Orthomin(10) CGSTAB 

Grid ILU ILUS ILU ILU' 

3 X 3 X 3  131 24 26 13 
4 X 4 X 4  191 28 37 15 
5 X 5 X 5  - 34 68 18 
6 x 6 ~ 6  - 39 92 22 
8 x 8 ~ 8  - 61 140 29 

10 x 10 x 10 - 78 253 38 
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Nauier-Stakes equations 

The preconditioner was based on only the Stokes equation matrix. In Table V, the number of 
Newton iterations as well as CGSTAB iterations are given for different grids and Reynolds 
numbers for unit cavity flow. Clearly, the ILUs preconditioner is superior to the ILU precondi- 
tioner. The solution of the Navier-Stokes equations for Reynolds number 400 and a 10 x 10 grid 
is shown as velocity vectors in Figure 4. 

However, Carey et 
al. used the penalty formulation to obtain their results. The penalty formulation differs from the 
mixed formulation in that the pressure is eliminated from the equation system so the total number 
of equations is reduced and the equation matrix may become very ill-conditioned. The precondi- 
tioner used by Carey et al. was a full factorization of the penalty matrix of Stokes equations. 

Comparing the results of Carey with those obtained here, the tendency seems to be that fewer 
Newton iterations are needed with the mixed formulation. Concerning the number of linear 
iterations a comparison of the results is difficult. Carey reports that in some experiments the 
Orthomin(5) algorithm was stagnant and failed to converge. This never occurred with the 
CGSTAB algorithm with the ILU' preconditioner. 

In Table VI the number of Newton and CGSTAB iterations are given for different maximum 
numbers of iterations in the linear solver at each Newton step. This experiment has also been 
carried out by Carey et al. In the first Newton iteration Carey always got one linear iteration. This 
is, of course, due to the full factorization of their preconditioner. A comparison with Carey's result 
shows that both more Newton iteration and more linear iterations are needed with the mixed 

The experiments with cavity flow are similar to those done by Carey et 

Table V. The number of iterations for CGSTAB with ILU and ILU' preconditioning for Navier-Stokes 
equations in two dimensions. No inner iterations are used. In the two last columns, the first number in the 
table is the number of Newton iterations, the second is the total number of CGSTAB iterations. The 

numbers in brackets are the number of CGSTAB iterations at each Newton step 

Grid Re ILU ILU' 

5 x 5  100 4/35 (8, 14, 12, 11) 
5/83 (11, 19, 19, 18, 16) 

6/136 (12, 27, 30, 32, 32, 3) 
6/205 (13, 35, 44. 43, 55, 15) 

7/* (19, 38, 33, > lO00, 71, 71, 5 )  

7 x 7  100 5/65 (12, 18, 17, 16, 2) 
5/124 (15, 32, 30, 26, 21) 
5/204 (21, 47, 44, 43, 49) 

6/350 (23, 62, 78, 65, 67, 55) 
7/770 (23, 86, 286, 118, 95, 95, 67) 

l o x  10 100 5/105 (31, 25, 25, 23, 1) 
5/189 (1 8, 40, 36, 48, 47) 

6/329 (29, 64, 56, 71, 75, 34) 
6/511 (22, 106, 65, 103, 121, 94) 

7/* (28, 140, 127, > 1O00, 167, 198, 65) 
15x15 100 5/195 (54, 46, 40, 25, 30) 

5/336 /(38, 87, 65, 67, 74, 5)  
6/527 (44, 107, 89, 115, 103, 69) 

7/811 (45, 147, 113, 172, 158, 160, 16) 
8/1340 (52, 252, 173, 207, 256, 194, 201, 5 )  

200 
300 
400 
500 

200 
300 
400 
500 

200 
300 
400 
500 

200 
300 
400 
500 

4/35 (8, 14, 12, 11) 
5/79 (11, 19, 19, 19, 11) 

6/138 (12, 27, 30, 33, 33, 3) 
6/208 (13, 35, 52, 43, 52, 13) 

7/672 (16, 40, 34, 426, 78, 71, 7) 
5/65 (12, 18, 17, 16, 2) 

5/126 (15, 32, 30, 27, 22) 
5/199 (21, 46, 42, 43, 47) 

6/252 (23, 62, 81, 66,67, 53) 
7/661 (23, 86, 155, 121, 96, 97, 83) 

5/104 (30. 25, 25, 23, 1) 
5/190 (18, 47, 36, 41, 28) 

6/329 (24, 63, 57, 81, 81, 26) 
61560 (27, 100, 89, 105, 142, 97) 

7/893 (27, 142, 124, 137, 213, 203, 47) 
5/216 (56, 41, 39, 72, 8) 

5/336 (38, 82, 66, 70, 75, 5 )  
6/522 (39, 108, 91, 113, 104, 67) 

7/842 (45, 150. 114, 173, 157, 168, 35) 
8/1262 (54, 244, 174, 205, 238, 135, 201, 11) 
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formulation and the CGSTAB iterative solver. This is not surprising, considering Carey’s 
preconditioning matrix. 

In Figure 5 three-dimensional cavity flow is shown for Reynolds number 400 and an 8 x 8 x 8 
grid. These results indicate that the preconditioner and CGSTAB algorithm also work in three 
dimensions. In Table VII the number of Newton iterations and CGSTAB iterations at each 
Newton step are shown for the three-dimensional Navier-Stokes equations. In order to achieve 
convergence with CGSTAB for high Reynolds numbers, the grid had to be correspondingly 
refined. To obtain convergence for Reynolds number 400, the grid has to be at least 8 x 8 x 8 and 
to obtain convergence for Reynolds number 500, the grid has to be at least 10 x 10 x 10. When the 

Figure 4. The solution of the Navier-Stokes problem for driven cavity flow in terms of velocity vectors for a 10 x 10 grid 
and Reynolds number 400 

Table VI. The number of CGSTAB iterations with ILU’ preconditioning with varying max- 
imum number of CGSTAB iterations for each Newton step. The Reynolds number is 400 

Grid Itmax CGSTAB iterations 

lox 10 100 
50 
25 
10 

15x 15 100 
50 
25 
10 

6/515 (26, 100, 89, 100, 100, 100) 
8/376 (26, 50, 50, 50, 50, 50, 50, 50) 

15/375 (25,. . .) 
17/170 (10,. . .) 

9/836 (45, 100, 100, 100, 100, 100, 100, 100.91) 
11/545 (45, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50) 

>40/(25, . . .) 
>40/(10, . . .) 
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Figure 5 .  The solution of the Navier-Stokes equations for three-dimensional driven cavity flow in terms of velocity 
vectors for 8 x 8 x 8 grid and Reynolds number 400 

Table VII. The number of iterations for CGSTAB with ILU' preconditioning for 
Navier-Stokes equations in three-dimensional cavity flow. No inner iterations are used. In the 
last column, the first number in the table is the number of Newton iterations, the second is the 
total number of CGSTAB iterations. The numbers in brackets are the number of CGSTAB 
iterations at each Newton step. The grid with resolution 10 x 10 x 10 has 29 114 unknowns 

Grid Re ILUS 

5 X 5 X 5  100 
200 
300 

8 x 8 ~ 8  100 
200 
300 
400 

l o x  l o x  10 100 
200 
300 
400 
500 

4/55 (11, 15, 15, 14) 
5/127 (13, 29, 29, 34, 22) 

6/339 (17, 63, 77, 75, 71, 36) 

5/96 (19, 25, 25, 26, 1) 
5/205 (18, 59, 46, 46, 36) 

6/485 (23, 108, 91, 122, 119, 22) 
6/961 (31, 181, 182, 219, 199, 149) 

5/135 (30, 37, 31, 33, 4) 
5/273 (27, 66, 60, 70, 50) 

6/616 (30, 150, 118, 145, 141, 32) 
7/1171 (29, 273, 187, 216, 232, 188,46) 
7/1910 (40, 429. 260, 281, 319, 488, 93) 
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grid is refined, the element size is decreased with a reduction of the degree of non-symmetry in the 
equations. Since an 'upwind' finite element method has not been used, the equation matrices are 
expected to have complex eigenvalues with a large imaginary part, when the spatial grid is too 
coarse. The convergence properties of CGSTAB may be sensitive to such eigenvalues and thereby 
result in a slower convergence rate or no convergence at all. 

DISCUSSION 

In the present work, several preconditioners and two linear equation solvers have been investig- 
ated for solving the Stokes and Navier-Stokes equations with mixed finite element formulation. 
Concerning the linear equation solvers, the CGSTAB algorithm is clearly superior to the 
Orthomin algorithm. CGSTAB converged properly in several cases where Orthomin failed to 
converge or became stagnant. In some stagnant cases a restart of the Orthomin algorithm helped. 

Among the preconditioners investigated, the most efficient one was incomplete factorization of 
the symmetric part of the Stokes equations with the allowance of slight fill-in. The numerical 
experiments show that both the incomplete factorization with slight fill-in and the CGSTAB 
iterative solver also work well in three-dimensional problems. 

The results of the present experiments are compared to those obtained by Carey et ~ 1 . ' ~  Carey 
et al. used a penalty formulation with full factorization of their Stokes equations as precondi- 
tioner and Orthomin (5 )  as linear equation solver. The equation matrix of the penalty formulation 
is very ill-conditioned, which probably leads to a slower convergence rate. On the other hand, the 
equation system for the same problem with mixed formulation requires more storage space as the 
pressure degrees of freedom are not eliminated from the equation system. 

Comparison with Carey's results shows that the present method of solving the Navier-Stokes 
equations might be more efficient. Much less work in each linear iteration is needed with the 
present method since only incomplete factorization of the Stokes equations is used for pre- 
conditioning. In most cases both the number of Newton iterations as well as linear iterations are 
comparable. 

For the non-linear Navier-Stokes equations different preconditioning matrices have been 
investigated. The best approach seems to use the symmetric part of the linear Stokes equation 
matrix as preconditioning matrix for all Newton steps. 

Among the preconditioners investigated, incomplete LU factorization, ILU', of the symmetric 
part of the Stokes matrix with fill-in for coupled nodes in the pressure matrix is clearly the most 
efficient. This preconditioner permits natural fill-in where the original local element matrices 
contained a zero. The fill-in algorithm allows fill-in at predefined places in the equation matrix 
and needs no additional administration. 

At present, the methods described in this paper seem efficient for computation of three- 
dimensional flow. This algorithm will be used together with the tri-tree unstructured grid 
generation algorithmg for investigation of transport of pollutants at sea-fjord interfaces in the near 
future. 
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APPENDIX 

The two Velocity Coupling and Pressure Coupling routines decide if two arbitrary nodes, and an 
arbitrary node and a corner node, respectively, are coupled. They return an index to where the 
second node (jj) is found in the array which contains the nodes in each row. If the node is not 
found, the return value is zero. 

Velocity Coupling ( i i ,  jj) 
if (PACij = = PAC,,) return(PACii); 
if (ii gt j j )  

for (k=PACjj; k<PACjj+,; k +  +) 
if (PARk = = ii) return(k); 

I 
{ 

1 
I 

if (jj gt ii) 

for (k=PACii; / C < P A C ~ ~ + ~ ;  k +  +) 
if (PA&= = i i )  return(@ 

return(0); 

Pressure Coupling(ii, jj) 

for (k=PBCii; k<PBCii+,; k +  +) 
if(PBRk = = jj) return&); 
return (0); 

{ 

1 

The forward elimination of the matrix A 

for (k=l;  k l n o .  of nodes; k +  +) 

fOr(ii=PACk+l; i i<PACk+l;i i++) 
{ 

for (jj=PACk+l; jj<PACk+,; jj+ +) 
{ i = PARii; j = PAR,; 

if Velocity Coupling(i, j )  
if (isj) 

u i j  = uij - Ljk u, U k i  

if (i > j) 
L,=L,-L,,u$u~~ 

The forward elimination of the matrix B 
for (k=l;  k l n o .  of nodes; k+ +) 

for (ii=PACk+l; ii<PACk+,; ii+ +) 



542 0. DAHL AND S .  0. WILLE 

for (j j=PBCk+l;  jj<PBCk+,; jj+ +) 
{ i = PARii; j = PBRj,; 

if Pressure Coupling(i, j) 
Bij=Bij-LikU&'Bkj 

1 
1 

The forward elimination of the matrix C 

for (k  = 1; k I no. of nodes; k + +) 
for (ii=PBCk+l; ii<PBCk+,; i i+ +) 
for (jj=PACk+l; j j < P A R k + l ;  jj+ +) 
{ i =  PBRii; j=  PARjj; 

if Pressure Coupling( i, j) 
cij = cij- Cik UE1 u k j  

1 
1 

The fill in introduced to the matrix P 

for (k = 1; k I no. of nodes; k + +) 

for (ii=PBCk+l; ii<PBCk+l; ii+ +) 
for (jj=PBCk+l; j j<PBCk+I;j j+ +) 
( i  = PBRii; j = PBR ..; J! 

{ 

if Pressure Coupling(i, j) 
Pij = Pij - Cik u&' Bkj 

I 

The forward elimination of the matrix P 

for (k= 1; k l n o .  of corner nodes; k+ +) 
{ p = PBCk; while ( p !  = PBRk)p + 

for (i i=p+l;  ii<PBCk+l; i i+ +) 
for ( j j=p+l;  jj<PBRk+l; jj+ +) 
( i  = PBRii; j= PBRjj; 

if Pressure Coupling(i, j) 
Pij = Pij- PikPGl P k j  

1 
1 

The forward elimination algorithm of the right-hand side with the matrices A and C 

for (k=l; ksno.  of nodes; k +  +) 

for (jj=PACk+l; jj<PACk+1; jj+ +) 
{ j = PAR, 

{ 

bUj = b,, - LjkUG' b, 
I 
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for ( j j=PBCk+l ;  j j<PBCk+l ;  jj+ +) 
{ j = PBR, 

b, = b, - Cjk U, buk 
1 

The forward elimination algorithm of the right-hand side with the matrix P 

for ( k =  1; ksno .  of corner nodes; k +  +) 
{p=PBCk; while (k!=PBR,)p+ +; 

for ( j j = p +  1; j j < P B C k + l ;  jj+ +) 
{ j = PAR,; 

b, = b ,  - P j k  U, b, 
1 

The backward substitution algorithm with the matrix P 

for (k=no. of corner nodes; k >  1; k-  -) 
{ p = PBCk; while (k! = PBR,)p + +; 

for ( j j = p + l ;  j j < P B C k + l ; j j +  +) 
{ j = PAR,; 

b, = bk - Pkjb, 
1 
b, = Pkl bk 

1 

The subtraction of Bb, from the right-hand side 

for (k= 1; k sno .  of nodes; k +  +) 
{ 

1 

The 

for ( j j=PBCk+l ;  j j < P B C k + l ;  jj+ +) 
{j=PBRjj; 

bUk = b V k  - B k j  bPj 

1 

backward substitution algorithm with the matrix A 

for &=no. of nodes; k 2  1; k- -) 

for ( j j = P A C k + l ;  j j<PACk+l ;  jj+ +) 
(j=PARjj; 

{ 

bUk = bUk -UkjbUj 
1 
bUk = ukkl bUk 

1 
The approximate solution of Qx = b is contained in b. 
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